User:KonSola5/TRS

From TetrisWiki
Revision as of 18:53, 22 June 2024 by KonSola5 (talk | contribs) (Highlight changes compared to SRS, add kick examples, add pentomino kick table)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Techmino Rotation System is a Super Rotation System-based default rotation system of Techmino, that adds many useful kicks. TRS contains dedicated kicks for all of the 28 dominoes to pentominoes. Notable feature of Techmino is the presence of a mechanic that transforms O-pieces into different pieces or teleports them into holes in order to perform O-spins.

Tetrominoes

In the tables below, non-180-degree kicks that are not present in SRS are marked with light blue background.

Z

Z Tetromino TRS Wall Kick Data
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6
0→R ( 0, 0) (-1, 0) (-1,+1) ( 0,-2) (-1,+2) ( 0,+1)
R→0 ( 0, 0) (+1, 0) (+1,-1) ( 0,+2) (+1,-2) ( 0,-1)
0→L ( 0, 0) (+1, 0) (+1,+1) ( 0,-2) (+1,-1) (+1,-2)
L→0 ( 0, 0) (-1, 0) (-1,-1) ( 0,+2) (-1,+2) ( 0,-1)
R→2 ( 0, 0) (+1, 0) (+1,-1) ( 0,+2) (+1,+2) (+1,+1)
2→R ( 0, 0) (-1, 0) (-1,+1) ( 0,-2) (-1,-2) (-1,-1)
L→2 ( 0, 0) (-1, 0) (-1,-1) ( 0,+2) (-1,+2) ( 0,-1)
2→L ( 0, 0) (+1, 0) (+1,+1) ( 0,-2) (+1,-2) ( 0,+1)
0→2 ( 0, 0) (+1, 0) (-1, 0) ( 0,-1) ( 0,+1)
2→0 ( 0, 0) (-1, 0) (+1, 0) ( 0,+1) ( 0,-1)
L→R ( 0, 0) ( 0,-1) ( 0,+1) ( 0,-2)
R→L ( 0, 0) ( 0,+1) ( 0,-1) ( 0,+2)

Example usages of additional kicks:

..........
..........
..ZZ......
..GCZ.....
GGGGGGGGG.
...Z......
..CZ......
..Z.......
..G.......
GGGGGGGGG.
In SRS, the Z piece can't be rotated clockwise in this position. TRS' 6th test allows the Z piece to rotate.

S

The S piece uses mirrored Z kicks.

S Tetromino TRS Wall Kick Data
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6
0→R ( 0, 0) (-1, 0) (-1,+1) ( 0,-2) (-1,-1) (-1,-2)
R→0 ( 0, 0) (+1, 0) (+1,-1) ( 0,+2) (+1,+2) ( 0,-1)
0→L ( 0, 0) (+1, 0) (+1,+1) ( 0,-2) (+1,+2) ( 0,+1)
L→0 ( 0, 0) (-1, 0) (-1,-1) ( 0,+2) (-1,-2) ( 0,-1)
R→2 ( 0, 0) (+1, 0) (+1,-1) ( 0,+2) (+1,+2) ( 0,-1)
2→R ( 0, 0) (-1, 0) (-1,+1) ( 0,-2) (-1,-2) ( 0,+1)
L→2 ( 0, 0) (-1, 0) (-1,-1) ( 0,+2) (-1,+2) (-1,+1)
2→L ( 0, 0) (+1, 0) (+1,+1) ( 0,-2) (+1,-2) (+1,-1)
0→2 ( 0, 0) (-1, 0) (+1, 0) ( 0,-1) ( 0,+1)
2→0 ( 0, 0) (+1, 0) (-1, 0) ( 0,+1) ( 0,-1)
L→R ( 0, 0) ( 0,+1) ( 0,-1) ( 0,+2)
R→L ( 0, 0) ( 0,-1) ( 0,+1) ( 0,-2)

Example usages of additional kicks:

..........
..........
...SS.....
..SCG.....
GGGGGGGGG.
...S......
...SC.....
....S.....
....G.....
GGGGGGGGG.
In SRS, the S piece can't be rotated counterclockwise in this position. TRS' 6th test allows the S piece to rotate.

J

J Tetromino TRS Wall Kick Data
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8
0→R ( 0, 0) (-1, 0) (-1,+1) ( 0,-2) (+1,+1) ( 0,+1) ( 0,-1)
R→0 ( 0, 0) (+1, 0) (+1,-1) ( 0,+2) (-1,-1) ( 0,-1) ( 0,+1)
0→L ( 0, 0) (+1, 0) (+1,+1) ( 0,-2) (+1,-2) (+1,-1) ( 0,+1)
L→0 ( 0, 0) (-1, 0) (-1,-1) ( 0,+2) (-1,+2) ( 0,-1) (-1,+1)
R→2 ( 0, 0) (+1, 0) (+1,-1) (+1,+1) (-1, 0) ( 0,-1) ( 0,+2) (+1,+2)
2→R ( 0, 0) (-1, 0) (-1,+1) (-1,-1) (+1, 0) ( 0,+1) ( 0,-2) (-1,-2)
L→2 ( 0, 0) (-1, 0) (-1,-1) (+1, 0) ( 0,+2) (-1,+2) (-1,+1)
2→L ( 0, 0) (+1, 0) (+1,-1) (-1, 0) (+1,+1) ( 0,-2) (+1,-2)
0→2 ( 0, 0) (-1, 0) (+1, 0) ( 0,-1) ( 0,+1)
2→0 ( 0, 0) (+1, 0) (-1, 0) ( 0,+1) ( 0,-1)
L→R ( 0, 0) ( 0,-1) ( 0,+1) (+1, 0)
R→L ( 0, 0) ( 0,+1) ( 0,-1) (-1, 0)

Example usages of additional kicks:

..........
..........
.......JCJ
GGGGGGGGGJ
GGGGGGGG..
..........
..........
.........J
GGGGGGGGGC
GGGGGGGGJJ
"Goodspin"

L

The L piece uses mirrored J kicks.

L Tetromino TRS Wall Kick Data
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8
0→R ( 0, 0) (-1, 0) (-1,+1) ( 0,-2) (-1,-2) (-1,-1) ( 0,+1)
R→0 ( 0, 0) (+1, 0) (+1,-1) ( 0,+2) (+1,+2) ( 0,-1) (+1,+1)
0→L ( 0, 0) (+1, 0) (+1,+1) ( 0,-2) (-1,+1) ( 0,+1) ( 0,-1)
L→0 ( 0, 0) (-1, 0) (-1,-1) ( 0,+2) (+1,-1) ( 0,-1) ( 0,+1)
R→2 ( 0, 0) (+1, 0) (+1,-1) (-1, 0) ( 0,+2) (+1,+2) (+1,+1)
2→R ( 0, 0) (-1, 0) (-1,-1) (+1, 0) (-1,+1) ( 0,-2) (-1,-2)
L→2 ( 0, 0) (-1, 0) (-1,-1) (-1,+1) (+1, 0) ( 0,-1) ( 0,+2) (-1,+2)
2→L ( 0, 0) (+1, 0) (+1,+1) (+1,-1) (-1, 0) ( 0,+1) ( 0,-2) (+1,-2)
0→2 ( 0, 0) (+1, 0) (-1, 0) ( 0,-1) ( 0,+1)
2→0 ( 0, 0) (-1, 0) (+1, 0) ( 0,+1) ( 0,-1)
L→R ( 0, 0) ( 0,+1) ( 0,-1) (+1, 0)
R→L ( 0, 0) ( 0,-1) ( 0,+1) (-1, 0)

Example usages of additional kicks:

..........
..........
LCL.......
LGGGGGGGGG
..GGGGGGGG
..........
..........
L.........
CGGGGGGGGG
LLGGGGGGGG
"Goodspin"

T

T Tetromino TRS Wall Kick Data
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8
0→R ( 0, 0) (-1, 0) (-1,+1) ( 0,-2) (-1,-2) ( 0,+1)
R→0 ( 0, 0) (+1, 0) (+1,-1) ( 0,+2) (+1,+2) ( 0,+1) ( 0,-1)
0→L ( 0, 0) (+1, 0) (+1,+1) ( 0,-2) (+1,-2) ( 0,+1)
L→0 ( 0, 0) (-1, 0) (-1,-1) ( 0,+2) (-1,+2) ( 0,+1) ( 0,-1)
R→2 ( 0, 0) (+1, 0) (+1,-1) ( 0,-1) (-1,-1) ( 0,+2) (+1,+2) (+1,+1)
2→R ( 0, 0) (-1, 0) ( 0,-2) (-1,-2) (-1,-1) ( 0,-1) (+1,+1)
L→2 ( 0, 0) (-1, 0) (-1,-1) ( 0,-1) (+1,-1) ( 0,+2) (-1,+2) (-1,+1)
2→L ( 0, 0) (+1, 0) ( 0,-2) (+1,-2) (+1,-1) ( 0,-1) (-1,+1)
0→2 ( 0, 0) (-1, 0) (+1, 0) ( 0,+1)
2→0 ( 0, 0) (+1, 0) (-1, 0) ( 0,-1)
L→R ( 0, 0) ( 0,-1) ( 0,+1) (+1, 0) ( 0,-2) ( 0,+2)
R→L ( 0, 0) ( 0,-1) ( 0,+1) (-1, 0) ( 0,-2) ( 0,+2)

Examples of additional kicks:

..........
...T......
GGGCTGGGGG
G..TGGGGGG
GG.GGGGGGG
..........
..........
GGG..GGGGG
GTCTGGGGGG
GGTGGGGGGG
"Wrong" T-spin

O

TODO: Explain how O-spins work

I

The yellow background highlights kicks reordered compared to SRS.

I Tetromino TRS Wall Kick Data
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6
0→R ( 0, 0) ( 0,+1) (+1, 0) (-2, 0) (-2,-1) (+1,+2)
R→0 ( 0, 0) (+2, 0) (-1, 0) (-1,-2) (+2,+1) ( 0,+1)
0→L ( 0, 0) ( 0,+1) (-1, 0) (+2, 0) (+2,-1) (-1,+2)
L→0 ( 0, 0) (-2, 0) (+1, 0) (+1,-2) (-2,+1) ( 0,+1)
R→2 ( 0, 0) (-1, 0) (+2, 0) (+2,-1) ( 0,-1) (-1,+2)
2→R ( 0, 0) (-2, 0) (+1, 0) (+1,-2) (-2,+1) ( 0,+1)
L→2 ( 0, 0) (+1, 0) (-2, 0) (-2,-1) ( 0,-1) (+1,+2)
2→L ( 0, 0) (+2, 0) (-1, 0) (-1,-2) (+2,+1) ( 0,+1)
0→2 ( 0, 0) (-1, 0) (+1, 0) ( 0,-1) ( 0,+1)
2→0 ( 0, 0) (+1, 0) (-1, 0) ( 0,+1) ( 0,-1)
L→R ( 0, 0) ( 0,-1) (-1, 0) (+1, 0) ( 0,+1)
R→L ( 0, 0) ( 0,-1) (+1, 0) (-1, 0) ( 0,+1)

Thanks to these changes, I kicks are now symmetric about the y-axis when rotating from or to a horizontal orientation.

..........
----......
.GG.GGGGGG
.GG.GGGGGG
IGGGGGGGGG
IGGGGGGGGG
IGGGGGGGGG
IGGGGGGGGG
From the dotted position, it is possible to clear 4 lines with both SRS and TRS by rotating clockwise.
..........
......----
GGGGGG.GG.
GGGGGG.GG.
GGGGGGGGGI
GGGGGGGGGI
GGGGGGGGGI
GGGGGGGGGI
In the symmetric position, only TRS allows the clearing of 4 lines by rotating counter-clockwise.
......I...
......I---
GGGGGGIGG.
GGGGGGIGG.
GGGGGGGGG.
GGGGGGGGG.
GGGGGGGGG.
GGGGGGGGG.
TRS also allows for this position to be achieved by rotating clockwise. However, with SRS, this is the only position achievable, regardless of which direction the player rotates.

Examples of additional kicks:

..........
...I......
GG.IGGGGGG
GG.IGGGGGG
G..I.GGGGG
..........
..........
GG..GGGGGG
GG..GGGGGG
GIIIIGGGGG
I-piece is rotated clockwise Rotate clockwise

Pentominoes

Z5

Z pentomino is centrosymmetric, and therefore it does not have any 180-degree kicks.

Z Pentomino TRS Wall Kick Data
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9
0→R ( 0, 0) ( 0,+1) (+1,+1) (-1, 0) ( 0,-3) ( 0,+2) ( 0,-2) ( 0,+3) (-1,+2)
R→0 ( 0, 0) ( 0,-1) (-1,-1) (+1, 0) ( 0,-3) ( 0,+2) ( 0,-2) ( 0,+3) (+1,-2)
0→L ( 0, 0) (+1, 0) ( 0,-3) ( 0,-1) ( 0,+1) ( 0,-2) ( 0,+2) ( 0,+3) (+1,+2)
L→0 ( 0, 0) (-1, 0) ( 0,-1) ( 0,+1) ( 0,-2) ( 0,-3) ( 0,+2) ( 0,+3) (-1,-2)
R→2 ( 0, 0) (-1, 0) ( 0,-1) ( 0,+1) ( 0,-2) ( 0,-3) ( 0,+2) ( 0,+3) (-1,-2)
2→R ( 0, 0) (+1, 0) ( 0,-3) ( 0,-1) ( 0,+1) ( 0,-2) ( 0,+2) ( 0,+3) (+1,+2)
L→2 ( 0, 0) ( 0,-1) (-1,-1) (+1, 0) ( 0,-3) ( 0,+2) ( 0,-2) ( 0,+3) (+1,-2)
2→L ( 0, 0) ( 0,+1) (+1,+1) (-1, 0) ( 0,-3) ( 0,+2) ( 0,-2) ( 0,+3) (-1,+2)

S5

S pentomino is centrosymmetric, and therefore it does not have any 180-degree kicks. S pentomino uses mirrored Z5 kicks.

S Pentomino TRS Wall Kick Data
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9
0→R ( 0, 0) (-1, 0) ( 0,-3) ( 0,-1) ( 0,+1) ( 0,-2) ( 0,+2) ( 0,+3) (-1,+2)
R→0 ( 0, 0) (+1, 0) ( 0,-1) ( 0,+1) ( 0,-2) ( 0,-3) ( 0,+2) ( 0,+3) (+1,-2)
0→L ( 0, 0) ( 0,+1) (-1,+1) (+1, 0) ( 0,-3) ( 0,+2) ( 0,-2) ( 0,+3) (+1,+2)
L→0 ( 0, 0) ( 0,-1) (+1,-1) (-1, 0) ( 0,-3) ( 0,+2) ( 0,-2) ( 0,+3) (-1,-2)
R→2 ( 0, 0) ( 0,-1) (+1,-1) (-1, 0) ( 0,-3) ( 0,+2) ( 0,-2) ( 0,+3) (-1,-2)
2→R ( 0, 0) ( 0,+1) (-1,+1) (+1, 0) ( 0,-3) ( 0,+2) ( 0,-2) ( 0,+3) (+1,+2)
L→2 ( 0, 0) (+1, 0) ( 0,-1) ( 0,+1) ( 0,-2) ( 0,-3) ( 0,+2) ( 0,+3) (+1,-2)
2→L ( 0, 0) (-1, 0) ( 0,-3) ( 0,-1) ( 0,+1) ( 0,-2) ( 0,+2) ( 0,+3) (-1,+2)

P

P Pentomino TRS Wall Kick Data
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7
0→R ( 0, 0) (-1, 0) (-1,+1) ( 0,-2) (-1,-2) (-1,-1) ( 0,+1)
R→0 ( 0, 0) (+1, 0) (+1,-1) ( 0,+2) (+1,+2) ( 0,-1) (+1,+1)
0→L ( 0, 0) (+1, 0) (+1,+1) ( 0,-2) (+1,-2)
L→0 ( 0, 0) (-1, 0) (-1,-1) ( 0,+2) (-1,+2)
R→2 ( 0, 0) (+1, 0) (+1,-1) ( 0,+2) (+1,+2) (+1,+1)
2→R ( 0, 0) (-1, 0) (-1,-1) (-1,+1) ( 0,-2) (-1,-2) (-1,-1)
L→2 ( 0, 0) (-1, 0) (-1,-1) (-1,+1) ( 0,-1) ( 0,+2) (-1,+2)
2→L ( 0, 0) (+1, 0) (+1,+1) (-1, 0) ( 0,-2) (+1,-2)
0→2 ( 0, 0) (-1, 0) ( 0,-1) ( 0,+1)
2→0 ( 0, 0) (+1, 0) ( 0,+1) ( 0,-1)
L→R ( 0, 0) (+1, 0) ( 0,+1) (-1, 0)
R→L ( 0, 0) (-1, 0) ( 0,-1) (+1, 0)

Q

Q pentomino uses mirrored P kicks.

Q Pentomino TRS Wall Kick Data
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7
0→R ( 0, 0) (-1, 0) (-1,+1) ( 0,-2) (-1,-2)
R→0 ( 0, 0) (+1, 0) (+1,-1) ( 0,+2) (+1,+2)
0→L ( 0, 0) (+1, 0) (+1,+1) ( 0,-2) (+1,-2) (+1,-1) ( 0,+1)
L→0 ( 0, 0) (-1, 0) (-1,-1) ( 0,+2) (-1,+2) ( 0,-1) (-1,+1)
R→2 ( 0, 0) (+1, 0) (+1,-1) (+1,+1) ( 0,-1) ( 0,+2) (+1,+2)
2→R ( 0, 0) (-1, 0) (-1,+1) (+1, 0) ( 0,-2) (-1,-2)
L→2 ( 0, 0) (-1, 0) (-1,-1) ( 0,+2) (-1,+2) (-1,+1)
2→L ( 0, 0) (+1, 0) (+1,-1) (+1,+1) ( 0,-2) (+1,-2) (+1,-1)
0→2 ( 0, 0) (+1, 0) ( 0,-1) ( 0,+1)
2→0 ( 0, 0) (-1, 0) ( 0,+1) ( 0,-1)
L→R ( 0, 0) (+1, 0) ( 0,-1) (-1, 0)
R→L ( 0, 0) (-1, 0) ( 0,+1) (+1, 0)

F

F Pentomino TRS Wall Kick Data
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7
0→R ( 0, 0) (-1, 0) (+1, 0) (-1,+1) ( 0,-2) ( 0,-3)
R→0 ( 0, 0) (+1, 0) (+1,-1) (-1, 0) ( 0,+2) ( 0,+3)
0→L ( 0, 0) (+1, 0) (+1,-1) ( 0,+1) ( 0,-2) ( 0,-3)
L→0 ( 0, 0) (-1,+1) (+1, 0) ( 0,-1) ( 0,+2) ( 0,+3)
R→2 ( 0, 0) (+1, 0) ( 0,-1) (-1, 0) ( 0,+2)
2→R ( 0, 0) (-1, 0) ( 0,+1) (+1, 0) ( 0,-2)
L→2 ( 0, 0) (-1, 0) ( 0,+1) (-1,+1) (+1, 0) ( 0,+2) (-2, 0)
2→L ( 0, 0) (+1, 0) (+1,-1) ( 0,-1) (-1, 0) ( 0,-2) (+2, 0)
0→2 ( 0, 0) (+1, 0) (-1, 0) (-1,-1)
2→0 ( 0, 0) (-1, 0) (+1, 0) (+1,+1)
L→R ( 0, 0) ( 0,-1) (-1,+1) ( 0,+1)
R→L ( 0, 0) ( 0,-1) (+1,-1) ( 0,+1)

E

E pentomino uses mirrored F kicks.

F Pentomino TRS Wall Kick Data
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7
0→R ( 0, 0) (-1, 0) (-1,-1) ( 0,+1) ( 0,-2) ( 0,-3)
R→0 ( 0, 0) (+1,+1) (-1, 0) ( 0,-1) ( 0,+2) ( 0,+3)
0→L ( 0, 0) (+1, 0) (-1, 0) (+1,+1) ( 0,-2) ( 0,-3)
L→0 ( 0, 0) (-1, 0) (-1,-1) (+1, 0) ( 0,+2) ( 0,+3)
R→2 ( 0, 0) (+1, 0) ( 0,+1) (+1,+1) (-1, 0) ( 0,+2) (+2, 0)
2→R ( 0, 0) (-1, 0) (-1,-1) ( 0,-1) (+1, 0) ( 0,-2) (-2, 0)
L→2 ( 0, 0) (-1, 0) ( 0,-1) (+1, 0) ( 0,+2)
2→L ( 0, 0) (+1, 0) ( 0,+1) (-1, 0) ( 0,-2)
0→2 ( 0, 0) (-1, 0) (+1, 0) (+1,-1)
2→0 ( 0, 0) (+1, 0) (-1, 0) (-1,+1)
L→R ( 0, 0) ( 0,-1) (-1,-1) ( 0,+1)
R→L ( 0, 0) ( 0,-1) (+1,+1) ( 0,+1)

T5

T Pentomino TRS Wall Kick Data
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9
0→R ( 0, 0) ( 0,-1) (-1,-1) (+1, 0) (+1,+1) ( 0,-3) (-1, 0) ( 0,+2) (-1,+2)
R→0 ( 0, 0) (+1, 0) ( 0,-1) (-1,-1) ( 0,-2) (-1,+1) ( 0,-3) (+1,-2) ( 0,+1)
0→L ( 0, 0) ( 0,-1) (+1,-1) (-1, 0) (-1,+1) ( 0,-3) (+1, 0) ( 0,+2) (+1,+2)
L→0 ( 0, 0) (-1, 0) ( 0,-1) (+1,-1) ( 0,-2) (+1,+1) ( 0,-3) (-1,-2) ( 0,+1)
R→2 ( 0, 0) (+1, 0) (-1, 0) ( 0,-2) ( 0,-3) ( 0,+1) (-1,+1)
2→R ( 0, 0) (+1,-1) (-1, 0) (+1, 0) ( 0,-1) ( 0,+2) ( 0,+3)
L→2 ( 0, 0) (-1, 0) (+1, 0) ( 0,-2) ( 0,-3) ( 0,+1) (+1,+1)
2→L ( 0, 0) (-1,-1) (+1, 0) (-1, 0) ( 0,-1) ( 0,+2) ( 0,+3)
0→2 ( 0, 0) ( 0,-1) ( 0,+1) ( 0,+2)
2→0 ( 0, 0) ( 0,-1) ( 0,+1) ( 0,-2)
L→R ( 0, 0) (+1, 0) (-1,+1) (-2, 0)
R→L ( 0, 0) (-1, 0) (+1,+1) (+2, 0)

U

U Pentomino TRS Wall Kick Data
Test 1 Test 2 Test 3 Test 4 Test 5
0→R ( 0, 0) (-1, 0) (-1,+1) ( 0,-2) (-1,-2)
R→0 ( 0, 0) (+1, 0) (+1,-1) ( 0,+2) (+1,+2)
0→L ( 0, 0) (+1, 0) (+1,+1) ( 0,-2) (+1,-2)
L→0 ( 0, 0) (-1, 0) (-1,-1) ( 0,-2) (-1,+2)
R→2 ( 0, 0) (+1, 0) (+1,-1) (+1,+1)
2→R ( 0, 0) (-1,-1) (-1,+1) (-1,-1)
L→2 ( 0, 0) (-1, 0) (-1,-1) (-1,+1)
2→L ( 0, 0) (+1,-1) (+1,+1) (+1,-1)
0→2 ( 0, 0) ( 0,+1)
2→0 ( 0, 0) ( 0,-1)
L→R ( 0, 0) ( 0,-1) ( 0,+1) (+1, 0)
R→L ( 0, 0) ( 0,-1) ( 0,+1) (-1, 0)

V

V Pentomino TRS Wall Kick Data
Test 1 Test 2 Test 3 Test 4 Test 5
0→R ( 0, 0) ( 0,+1) (-1, 0) ( 0,-2) (-1,-2)
R→0 ( 0, 0) ( 0,+1) (+1, 0) ( 0,-2) (+1,-2)
0→L ( 0, 0) ( 0,-1) ( 0,+1) ( 0,+2)
L→0 ( 0, 0) ( 0,-1) ( 0,+1) ( 0,-2)
R→2 ( 0, 0) ( 0,-1) ( 0,+1) ( 0,+2)
2→R ( 0, 0) ( 0,-1) ( 0,+1) ( 0,-2)
L→2 ( 0, 0) (+1, 0) (-1, 0)
2→L ( 0, 0) (-1, 0) (+1, 0)
0→2 ( 0, 0) (-1,+1) (+1,-1)
2→0 ( 0, 0) (+1,-1) (-1,+1)
L→R ( 0, 0) (+1,+1) (-1,-1)
R→L ( 0, 0) (-1,-1) (+1,+1)

W

W Pentomino TRS Wall Kick Data
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10
0→R ( 0, 0) ( 0,-1) (-1, 0) (+1, 0) (+1,-1) ( 0,+2)
R→0 ( 0, 0) ( 0,-1) (-1,-1) ( 0,+1) ( 0,-2) (+1,-2) ( 0,+2)
0→L ( 0, 0) (+1, 0) (+1,+1) ( 0,-1) ( 0,-2) ( 0,-3) (+1,-1) ( 0,+1) ( 0,+2) ( 0,+3)
L→0 ( 0, 0) (-1, 0) (-1,+1) ( 0,-1) ( 0,-2) ( 0,-3) (-1,-1) ( 0,+1) ( 0,+2) ( 0,+3)
R→2 ( 0, 0) (+1, 0) ( 0,-1) (-2, 0) (+1,+1) (-1, 0) ( 0,+1) (-1,-1)
2→R ( 0, 0) (-1, 0) ( 0,-1) (+2, 0) (-1,+1) (+1, 0) ( 0,+1) (+1,-1)
L→2 ( 0, 0) ( 0,-1) (+1, 0) ( 0,+1) (-1, 0) (-1,-1) ( 0,+2)
2→L ( 0, 0) ( 0,-1) (+1,-1) ( 0,+1) ( 0,-2) (-1,-2) ( 0,+2)
0→2 ( 0, 0) ( 0,-1) (-1, 0)
2→0 ( 0, 0) ( 0,+1) (+1, 0)
L→R ( 0, 0) ( 0,+1) (-1, 0)
R→L ( 0, 0) ( 0,-1) (+1, 0)

X

X pentomino is special, because its first test is not (0, 0). This allows for X-spins to exist.

X Pentomino TRS Wall Kick Data
Test 1 Test 2 Test 3 Test 4 Test 5
CW (+1,-1) (+1, 0) (+1,+1) (+1,-2) (+1,+2)
CCW (-1,-1) (-1, 0) (-1,+1) (-1,-2) (-1,+2)
180 ( 0,-1) ( 0,-2) ( 0,+1) ( 0,-2) ( 0,+2)

J5

J Pentomino TRS Wall Kick Data
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10
0→R ( 0, 0) (-1, 0) (-1,+1) ( 0,-3) (-1,+1) (-1,+2) ( 0,+1)
R→0 ( 0, 0) (-1, 0) (+1,-1) ( 0,+3) (+1,-1) (+1,-2) ( 0,+1)
0→L ( 0, 0) ( 0,-1) (+1,-1) (-1, 0) (+1,+1) ( 0,-2) (+1,-2) ( 0,-3) (+1,-3) (-1,+1)
L→0 ( 0, 0) ( 0,+1) (-1,+1) (+1, 0) (-1,-1) ( 0,+2) (-1,+2) ( 0,+3) (-1,+3) (+1,-1)
R→2 ( 0, 0) (+1, 0) (+1,-1) ( 0,-1) (+1,-2) ( 0,-2) (+1,+1) (-1, 0) ( 0,+2) (+1,+2)
2→R ( 0, 0) (-1, 0) (-1,+1) ( 0,+1) (-1,+2) ( 0,+2) (-1,-1) (+1, 0) ( 0,-2) (-1,-2)
L→2 ( 0, 0) (-1, 0) (-1,+1) (-1,-1) (+1, 0) ( 0,+2) (-1,+2) ( 0,-2)
2→L ( 0, 0) (+1, 0) (+1,-1) (+1,+1) (-1, 0) ( 0,-2) (+1,-2) ( 0,+2)
0→2 ( 0, 0) ( 0,-1) (-1,-1) (+1,-1) (-1, 0) (+2,-1)
2→0 ( 0, 0) ( 0,+1) (+1,+1) (-1,+1) (+1, 0) (-2,+1)
L→R ( 0, 0) (-1, 0) (-1,-1) ( 0,+1) (-1,-2)
R→L ( 0, 0) (+1, 0) (+1,+1) ( 0,-1) (+1,+2)

L5

L pentomino uses mirrored J5 kicks.

L Pentomino TRS Wall Kick Data
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10
0→R ( 0, 0) ( 0,-1) (-1,-1) (+1, 0) (-1,+1) ( 0,-2) (-1,-2) ( 0,-3) (-1,-3) (+1,+1)
R→0 ( 0, 0) ( 0,+1) (+1,+1) (-1, 0) (+1,-1) ( 0,+2) (+1,+2) ( 0,+3) (+1,+3) (-1,-1)
0→L ( 0, 0) (+1, 0) (+1,+1) ( 0,-3) (+1,+1) (+1,+2) ( 0,+1)
L→0 ( 0, 0) (+1, 0) (-1,-1) ( 0,+3) (-1,-1) (-1,-2) ( 0,+1)
R→2 ( 0, 0) (+1, 0) (+1,+1) (+1,-1) (-1, 0) ( 0,+2) (+1,+2) ( 0,-2)
2→R ( 0, 0) (-1, 0) (-1,-1) (-1,+1) (+1, 0) ( 0,-2) (-1,-2) ( 0,+2)
L→2 ( 0, 0) (-1, 0) (-1,-1) ( 0,-1) (-1,-2) ( 0,-2) (-1,+1) (+1, 0) ( 0,+2) (-1,+2)
2→L ( 0, 0) (+1, 0) (+1,+1) ( 0,+1) (+1,+2) ( 0,+2) (+1,-1) (-1, 0) ( 0,-2) (+1,-2)
0→2 ( 0, 0) ( 0,-1) (+1,-1) (-1,-1) (+1, 0) (-2,-1)
2→0 ( 0, 0) ( 0,+1) (-1,+1) (+1,+1) (-1, 0) (+2,+1)
L→R ( 0, 0) (-1, 0) (-1,+1) ( 0,-1) (-1,+2)
R→L ( 0, 0) (+1, 0) (+1,-1) ( 0,+1) (+1,-2)

R

R Pentomino TRS Wall Kick Data
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 Test 11 Test 12
0→R ( 0, 0) (-1, 0) (-1,+1) (+1, 0) (-1,+2) (-1,-1) ( 0,-3) ( 0,+1)
R→0 ( 0, 0) (-1, 0) (+1, 0) (+1,-1) (+1,-2) (+1,+1) ( 0,+3) ( 0,+1)
0→L ( 0, 0) ( 0,-1) (+1, 0) ( 0,+1) (+1,-1) (-1, 0) (+1,+1) ( 0,-2) (+1,-2) ( 0,-3) (+1,-3) (-1,+1)
L→0 ( 0, 0) ( 0,-1) (-1, 0) ( 0,+1) (-1,+1) (+1, 0) (-1,-1) ( 0,+2) (-1,+2) ( 0,+3) (-1,+3) (+1,-1)
R→2 ( 0, 0) (+1, 0) (+1,-1) ( 0,-1) (+1,-2) ( 0,-2) (+1,+1) (-1, 0) ( 0,+2) (+1,+2)
2→R ( 0, 0) (-1, 0) (-1,+1) ( 0,+1) (-1,+2) ( 0,+2) (-1,-1) (+1, 0) ( 0,-2) (-1,-2)
L→2 ( 0, 0) ( 0,-1) (-1, 0) (-1,+1) (-1,-1) (+1, 0) ( 0,+2) (-1,+2) ( 0,-2)
2→L ( 0, 0) ( 0,+1) (+1, 0) (+1,-1) (+1,+1) (-1, 0) ( 0,-2) (+1,-2) ( 0,+2)
0→2 ( 0, 0) ( 0,-1) (+1,-1) (-1, 0) (+2,-1) ( 0,+1)
2→0 ( 0, 0) ( 0,+1) (-1,+1) (+1, 0) (-2,+1) ( 0,-1)
L→R ( 0, 0) (-1, 0) (-1,-1) ( 0,+1) (-1,-2)
R→L ( 0, 0) (+1, 0) (+1,+1) ( 0,-1) (+1,+2)

Y

Y pentomino uses mirrored R kicks.

Y Pentomino TRS Wall Kick Data
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 Test 11 Test 12
0→R ( 0, 0) ( 0,-1) (-1, 0) ( 0,+1) (-1,-1) (+1, 0) (-1,+1) ( 0,-2) (-1,-2) ( 0,-3) (-1,-3) (+1,+1)
R→0 ( 0, 0) ( 0,-1) (+1, 0) ( 0,+1) (+1,+1) (-1, 0) (+1,-1) ( 0,+2) (+1,+2) ( 0,+3) (+1,+3) (-1,-1)
0→L ( 0, 0) (+1, 0) (+1,+1) (-1, 0) (+1,+2) (+1,-1) ( 0,-3) ( 0,+1)
L→0 ( 0, 0) (+1, 0) (-1, 0) (-1,-1) (-1,-2) (-1,+1) ( 0,+3) ( 0,+1)
R→2 ( 0, 0) ( 0,-1) (+1, 0) (+1,+1) (+1,-1) (-1, 0) ( 0,+2) (+1,+2) ( 0,-2)
2→R ( 0, 0) ( 0,+1) (-1, 0) (-1,-1) (-1,+1) (+1, 0) ( 0,-2) (-1,-2) ( 0,+2)
L→2 ( 0, 0) (-1, 0) (-1,-1) ( 0,-1) (-1,-2) ( 0,-2) (-1,+1) (+1, 0) ( 0,+2) (-1,+2)
2→L ( 0, 0) (+1, 0) (+1,+1) ( 0,+1) (+1,+2) ( 0,+2) (+1,-1) (-1, 0) ( 0,-2) (+1,-2)
0→2 ( 0, 0) ( 0,-1) (-1,-1) (+1, 0) (-2,-1) ( 0,+1)
2→0 ( 0, 0) ( 0,+1) (+1,+1) (-1, 0) (+2,+1) ( 0,-1)
L→R ( 0, 0) (-1, 0) (-1,+1) ( 0,-1) (-1,+2)
R→L ( 0, 0) (+1, 0) (+1,-1) ( 0,+1) (+1,-2)

N

N Pentomino TRS Wall Kick Data
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 Test 11
0→R ( 0, 0) (-1, 0) (-1,+1) ( 0,+1) (+1, 0) (+1,+1) (-1,+2) (-2, 0) ( 0,-2)
R→0 ( 0, 0) (+1, 0) (-1, 0) ( 0,-1) (-1,-1) (+1,-1) (+1,-2) (+2, 0) ( 0,+2)
0→L ( 0, 0) (-1, 0) (+1,-1) ( 0,-2) ( 0,-3) (+1, 0) (+1,-2) (+1,-3) ( 0,+1) (-1,+1)
L→0 ( 0, 0) (-1, 0) (+1,-1) (+1,-2) (+1, 0) ( 0,-2) (+1,-3) (-1,+2) ( 0,+3) (-1,+3)
R→2 ( 0, 0) (-1, 0) (+1,-1) (-1,-1) (+1,-2) (+1, 0) ( 0,-2) (+1,-3) (-1,+2) ( 0,+3) (-1,+3)
2→R ( 0, 0) (-1, 0) (+1,-1) (+1,+1) ( 0,-2) ( 0,-3) (+1, 0) (+1,-2) (+1,-3) ( 0,+1) (-1,+1)
L→2 ( 0, 0) (-1, 0) ( 0,-1) (-1,-2) (+1,-1) (+1, 0) (+1,+1) ( 0,+2) ( 0,+3)
2→L ( 0, 0) ( 0,-2) ( 0,-3) (+1,+2) (+1, 0) ( 0,+1) (-1,+1) ( 0,-1) ( 0,+2)
0→2 ( 0, 0) (-1, 0) ( 0,+2) ( 0,-1)
2→0 ( 0, 0) (+1, 0) ( 0,-2) ( 0,+1)
L→R ( 0, 0) (-1, 0) (-1,-1) ( 0,+1) (+1,+2)
R→L ( 0, 0) (+1, 0) (+1,+1) ( 0,-1) (-1,-2)

H

H pentomino uses mirrored N kicks.

H Pentomino TRS Wall Kick Data
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 Test 11
0→R ( 0, 0) (+1, 0) (-1,-1) ( 0,-2) ( 0,-3) (-1, 0) (-1,-2) (-1,-3) ( 0,+1) (+1,+1)
R→0 ( 0, 0) (+1, 0) (-1,-1) (-1,-2) (-1, 0) ( 0,-2) (-1,-3) (+1,+2) ( 0,+3) (+1,+3)
0→L ( 0, 0) (+1, 0) (+1,+1) ( 0,+1) (-1, 0) (-1,+1) (+1,+2) (+2, 0) ( 0,-2)
L→0 ( 0, 0) (-1, 0) (+1, 0) ( 0,-1) (+1,-1) (-1,-1) (-1,-2) (-2, 0) ( 0,+2)
R→2 ( 0, 0) (+1, 0) ( 0,-1) (+1,-2) (-1,-1) (-1, 0) (-1,+1) ( 0,+2) ( 0,+3)
2→R ( 0, 0) ( 0,-2) ( 0,-3) (-1,+2) (-1, 0) ( 0,+1) (+1,+1) ( 0,-1) ( 0,+2)
L→2 ( 0, 0) (+1, 0) (-1,-1) (+1,-1) (-1,-2) (-1, 0) ( 0,-2) (-1,-3) (+1,+2) ( 0,+3) (+1,+3)
2→L ( 0, 0) (+1, 0) (-1,-1) (-1,+1) ( 0,-2) ( 0,-3) (-1, 0) (-1,-2) (-1,-3) ( 0,+1) (+1,+1)
0→2 ( 0, 0) (+1, 0) ( 0,+2) ( 0,-1)
2→0 ( 0, 0) (-1, 0) ( 0,-2) ( 0,+1)
L→R ( 0, 0) (-1, 0) (-1,+1) ( 0,-1) (+1,-2)
R→L ( 0, 0) (+1, 0) (+1,-1) ( 0,+1) (-1,+2)

I5

I pentomino is centrosymmetric, and therefore it does not have any 180-degree kicks.

I Pentomino TRS Wall Kick Data
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 Test 11 Test 12 Test 13 Test 14 Test 15 Test 16 Test 17 Test 18 Test 19 Test 20 Test 21
0→R ( 0, 0) (+1,-1) (+1, 0) (+1,+1) ( 0,+1) (-1,+1) (-1, 0) (-1,-1) ( 0,-1) ( 0,-2) (-2,-1) (-2,-2) (+2, 0) (+2,-1) (+2,-2) (+1,+2) (+2,+2) (-1,+2) (-2,+2)
R→0 ( 0, 0) (-1, 0) (-1,-1) ( 0,-1) (+1,-1) (-2,-2) (-2,-1) (-2, 0) (-1,-2) ( 0,-2) (+1,-2) (+2,-2) (-1,+1) (-2,+1) (-2,+2) (+1, 0) (+2, 0) (+2,-1) ( 0,+1) (+1,-1) (+2,-2)
0→L ( 0, 0) (-1,-1) (-1, 0) (-1,+1) ( 0,+1) (+1,+1) (+1, 0) (+1,-1) ( 0,-1) ( 0,-2) (+2,-1) (+2,-2) (-2, 0) (-2,-1) (-2,-2) (-1,+2) (-2,+2) (+1,+2) (+2,+2)
L→0 ( 0, 0) (+1, 0) (+1,-1) ( 0,-1) (-1,-1) (+2,-2) (+2,-1) (+2, 0) (+1,-2) ( 0,-2) (-1,-2) (-2,-2) (+1,+1) (+2,+1) (+2,+2) (-1, 0) (-2, 0) (-2,-1) ( 0,+1) (-1,-1) (-2,-2)
R→2 ( 0, 0) (+1, 0) (+1,-1) ( 0,-1) (-1,-1) (+2,-2) (+2,-1) (+2, 0) (+1,-2) ( 0,-2) (-1,-2) (-2,-2) (+1,+1) (+2,+1) (+2,+2) (-1, 0) (-2, 0) (-2,-1) ( 0,+1) (-1,-1) (-2,-2)
2→R ( 0, 0) (-1,-1) (-1, 0) (-1,+1) ( 0,+1) (+1,+1) (+1, 0) (+1,-1) ( 0,-1) ( 0,-2) (+2,-1) (+2,-2) (-2, 0) (-2,-1) (-2,-2) (-1,+2) (-2,+2) (+1,+2) (+2,+2)
L→2 ( 0, 0) (-1, 0) (-1,-1) ( 0,-1) (+1,-1) (-2,-2) (-2,-1) (-2, 0) (-1,-2) ( 0,-2) (+1,-2) (+2,-2) (-1,+1) (-2,+1) (-2,+2) (+1, 0) (+2, 0) (+2,-1) ( 0,+1) (+1,-1) (+2,-2)
2→L ( 0, 0) (+1,-1) (+1, 0) (+1,+1) ( 0,+1) (-1,+1) (-1, 0) (-1,-1) ( 0,-1) ( 0,-2) (-2,-1) (-2,-2) (+2, 0) (+2,-1) (+2,-2) (+1,+2) (+2,+2) (-1,+2) (-2,+2)

Playfield test

ABCD-FGHIJ-L-NOP--ST---X-Z
ABCD-FGHIJ-L-NOP--ST---X-Z
-.--------------------....
----------123456789-......