Orientation: Difference between revisions

From TetrisWiki
Jump to navigation Jump to search
coougetroc
MattMayuga (talk | contribs)
Redirected page to Tetromino#Orientation
Tag: New redirect
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
virelelacnol
#REDIRECT [[Tetromino#Orientation]]
A [[tetromino|tetromino's]] orientation, with regards to ''Tetris'' refers to the different ways that tetromino can exist after [[rotate|rotations]].
 
Normally all the tetrominoes have a total of nineteen orientations, but probably to make things more symmetric, [[Tetris Guideline|newer games]] add six orientations: two for ''S'', ''Z'', and ''I''.
 
Orientations can be described either by the way they point (especially for T, which at least one reviewer has compared to a finger gesture[http://www.arkmay.com/tetris/pieces.html]) or by the way the longest flat side faces.
{|
! Point up<br>Flat down
! Point right<br>Flat left
! Point down<br>Flat up
! Point left<br>Flat right
|- valign="top"
|{{pfstart}}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | | |o|o| | | | }}
{{pfrow | | | | |o|o| | | | }}
{{pfrow | | | | | | | | | | }}
{{pfend}}
|{{pfstart}}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | | |o|o| | | | }}
{{pfrow | | | | |o|o| | | | }}
{{pfrow | | | | | | | | | | }}
{{pfend}}
|{{pfstart}}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | | |o|o| | | | }}
{{pfrow | | | | |o|o| | | | }}
{{pfrow | | | | | | | | | | }}
{{pfend}}
|{{pfstart}}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | | |o|o| | | | }}
{{pfrow | | | | |o|o| | | | }}
{{pfrow | | | | | | | | | | }}
{{pfend}}
|}
{|
|- valign="top"
|{{pfstart}}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | |i|i|i|i| | | }}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfend}}
|{{pfstart}}
{{pfrow | | | | | |i| | | | }}
{{pfrow | | | | | |i| | | | }}
{{pfrow | | | | | |i| | | | }}
{{pfrow | | | | | |i| | | | }}
{{pfend}}
|{{pfstart}}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | |i|i|i|i| | | }}
{{pfrow | | | | | | | | | | }}
{{pfend}}
|{{pfstart}}
{{pfrow | | | | |i| | | | | }}
{{pfrow | | | | |i| | | | | }}
{{pfrow | | | | |i| | | | | }}
{{pfrow | | | | |i| | | | | }}
{{pfend}}
|}
{|
|- valign="top"
|{{pfstart}}
{{pfrow | | | | |t| | | | | }}
{{pfrow | | | |t|t|t| | | | }}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfend}}
|{{pfstart}}
{{pfrow | | | | |t| | | | | }}
{{pfrow | | | | |t|t| | | | }}
{{pfrow | | | | |t| | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfend}}
|{{pfstart}}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | |t|t|t| | | | }}
{{pfrow | | | | |t| | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfend}}
|{{pfstart}}
{{pfrow | | | | |t| | | | | }}
{{pfrow | | | |t|t| | | | | }}
{{pfrow | | | | |t| | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfend}}
|}
{|
|- valign="top"
|{{pfstart}}
{{pfrow | | | | |s|s| | | | }}
{{pfrow | | | |s|s| | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfend}}
|{{pfstart}}
{{pfrow | | | | |s| | | | | }}
{{pfrow | | | | |s|s| | | | }}
{{pfrow | | | | | |s| | | | }}
{{pfrow | | | | | | | | | | }}
{{pfend}}
|{{pfstart}}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | | |s|s| | | | }}
{{pfrow | | | |s|s| | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfend}}
|{{pfstart}}
{{pfrow | | | |s| | | | | | }}
{{pfrow | | | |s|s| | | | | }}
{{pfrow | | | | |s| | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfend}}
|}
{|
|- valign="top"
|{{pfstart}}
{{pfrow | | | |z|z| | | | | }}
{{pfrow | | | | |z|z| | | | }}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfend}}
|{{pfstart}}
{{pfrow | | | | | |z| | | | }}
{{pfrow | | | | |z|z| | | | }}
{{pfrow | | | | |z| | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfend}}
|{{pfstart}}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | |z|z| | | | | }}
{{pfrow | | | | |z|z| | | | }}
{{pfrow | | | | | | | | | | }}
{{pfend}}
|{{pfstart}}
{{pfrow | | | | |z| | | | | }}
{{pfrow | | | |z|z| | | | | }}
{{pfrow | | | |z| | | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfend}}
|}
{|
|- valign="top"
|{{pfstart}}
{{pfrow | | | |j| | | | | | }}
{{pfrow | | | |j|j|j| | | | }}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfend}}
|{{pfstart}}
{{pfrow | | | | |j|j| | | | }}
{{pfrow | | | | |j| | | | | }}
{{pfrow | | | | |j| | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfend}}
|{{pfstart}}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | |j|j|j| | | | }}
{{pfrow | | | | | |j| | | | }}
{{pfrow | | | | | | | | | | }}
{{pfend}}
|{{pfstart}}
{{pfrow | | | | |j| | | | | }}
{{pfrow | | | | |j| | | | | }}
{{pfrow | | | |j|j| | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfend}}
|}
{|
|- valign="top"
|{{pfstart}}
{{pfrow | | | | | |l| | | | }}
{{pfrow | | | |l|l|l| | | | }}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfend}}
|{{pfstart}}
{{pfrow | | | | |l| | | | | }}
{{pfrow | | | | |l| | | | | }}
{{pfrow | | | | |l|l| | | | }}
{{pfrow | | | | | | | | | | }}
{{pfend}}
|{{pfstart}}
{{pfrow | | | | | | | | | | }}
{{pfrow | | | |l|l|l| | | | }}
{{pfrow | | | |l| | | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfend}}
|{{pfstart}}
{{pfrow | | | |l|l| | | | | }}
{{pfrow | | | | |l| | | | | }}
{{pfrow | | | | |l| | | | | }}
{{pfrow | | | | | | | | | | }}
{{pfend}}
|}
 
[[Category:Interface]]

Latest revision as of 12:02, 29 October 2019