|
|
(13 intermediate revisions by 9 users not shown) |
Line 1: |
Line 1: |
| A [[tetromino]]es orientation, with regards to ''Tetris'' refers to the different ways that tetromino can exist after [[rotate|rotations]].
| | #REDIRECT [[Tetromino#Orientation]] |
| | |
| Normally all the tetrominoes have a total of nineteen orientations, but probably to make things more symmetric, [[Tetris Guideline|newer games]] add six orientations: two for ''S'', ''Z'', and ''I''.
| |
| {|
| |
| |- valign="top"
| |
| |{{pfstart}}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfrow | | | | |o|o| | | | }}
| |
| {{pfrow | | | | |o|o| | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfend}}
| |
| |{{pfstart}}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfrow | | | | |o|o| | | | }}
| |
| {{pfrow | | | | |o|o| | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfend}}
| |
| |{{pfstart}}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfrow | | | | |o|o| | | | }}
| |
| {{pfrow | | | | |o|o| | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfend}}
| |
| |{{pfstart}}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfrow | | | | |o|o| | | | }}
| |
| {{pfrow | | | | |o|o| | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfend}}
| |
| |}
| |
| {|
| |
| |- valign="top"
| |
| |{{pfstart}}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfrow | | | |i|i|i|i| | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfend}}
| |
| |{{pfstart}}
| |
| {{pfrow | | | | | |i| | | | }}
| |
| {{pfrow | | | | | |i| | | | }}
| |
| {{pfrow | | | | | |i| | | | }}
| |
| {{pfrow | | | | | |i| | | | }}
| |
| {{pfend}}
| |
| |{{pfstart}}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfrow | | | |i|i|i|i| | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfend}}
| |
| |{{pfstart}}
| |
| {{pfrow | | | | |i| | | | | }}
| |
| {{pfrow | | | | |i| | | | | }}
| |
| {{pfrow | | | | |i| | | | | }}
| |
| {{pfrow | | | | |i| | | | | }}
| |
| {{pfend}}
| |
| |}
| |
| {|
| |
| |- valign="top"
| |
| |{{pfstart}}
| |
| {{pfrow | | | | |t| | | | | }}
| |
| {{pfrow | | | |t|t|t| | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfend}}
| |
| |{{pfstart}}
| |
| {{pfrow | | | | |t| | | | | }}
| |
| {{pfrow | | | | |t|t| | | | }}
| |
| {{pfrow | | | | |t| | | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfend}}
| |
| |{{pfstart}}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfrow | | | |t|t|t| | | | }}
| |
| {{pfrow | | | | |t| | | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfend}}
| |
| |{{pfstart}}
| |
| {{pfrow | | | | |t| | | | | }}
| |
| {{pfrow | | | |t|t| | | | | }}
| |
| {{pfrow | | | | |t| | | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfend}}
| |
| |}
| |
| {|
| |
| |- valign="top"
| |
| |{{pfstart}}
| |
| {{pfrow | | | | |s|s| | | | }}
| |
| {{pfrow | | | |s|s| | | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfend}}
| |
| |{{pfstart}}
| |
| {{pfrow | | | | |s| | | | | }}
| |
| {{pfrow | | | | |s|s| | | | }}
| |
| {{pfrow | | | | | |s| | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfend}}
| |
| |{{pfstart}}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfrow | | | | |s|s| | | | }}
| |
| {{pfrow | | | |s|s| | | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfend}}
| |
| |{{pfstart}}
| |
| {{pfrow | | | |s| | | | | | }}
| |
| {{pfrow | | | |s|s| | | | | }}
| |
| {{pfrow | | | | |s| | | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfend}}
| |
| |}
| |
| {|
| |
| |- valign="top"
| |
| |{{pfstart}}
| |
| {{pfrow | | | |z|z| | | | | }}
| |
| {{pfrow | | | | |z|z| | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfend}}
| |
| |{{pfstart}}
| |
| {{pfrow | | | | | |z| | | | }}
| |
| {{pfrow | | | | |z|z| | | | }}
| |
| {{pfrow | | | | |z| | | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfend}}
| |
| |{{pfstart}}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfrow | | | |z|z| | | | | }}
| |
| {{pfrow | | | | |z|z| | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfend}}
| |
| |{{pfstart}}
| |
| {{pfrow | | | | |z| | | | | }}
| |
| {{pfrow | | | |z|z| | | | | }}
| |
| {{pfrow | | | |z| | | | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfend}}
| |
| |}
| |
| {|
| |
| |- valign="top"
| |
| |{{pfstart}}
| |
| {{pfrow | | | |j| | | | | | }}
| |
| {{pfrow | | | |j|j|j| | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfend}}
| |
| |{{pfstart}}
| |
| {{pfrow | | | | |j|j| | | | }}
| |
| {{pfrow | | | | |j| | | | | }}
| |
| {{pfrow | | | | |j| | | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfend}}
| |
| |{{pfstart}}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfrow | | | |j|j|j| | | | }}
| |
| {{pfrow | | | | | |j| | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfend}}
| |
| |{{pfstart}}
| |
| {{pfrow | | | | |j| | | | | }}
| |
| {{pfrow | | | | |j| | | | | }}
| |
| {{pfrow | | | |j|j| | | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfend}}
| |
| |}
| |
| {|
| |
| |- valign="top"
| |
| |{{pfstart}}
| |
| {{pfrow | | | | | |l| | | | }}
| |
| {{pfrow | | | |l|l|l| | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfend}}
| |
| |{{pfstart}}
| |
| {{pfrow | | | | |l| | | | | }}
| |
| {{pfrow | | | | |l| | | | | }}
| |
| {{pfrow | | | | |l|l| | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfend}}
| |
| |{{pfstart}}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfrow | | | |l|l|l| | | | }}
| |
| {{pfrow | | | |l| | | | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfend}}
| |
| |{{pfstart}}
| |
| {{pfrow | | | |l|l| | | | | }}
| |
| {{pfrow | | | | |l| | | | | }}
| |
| {{pfrow | | | | |l| | | | | }}
| |
| {{pfrow | | | | | | | | | | }}
| |
| {{pfend}}
| |
| |}
| |